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The development of efficient routes to chiralansa-zirconocenes
is important owing to the utility of these complexes in catalysis.1-3

We report that the substitution of Zr-Cl ligands by cyclopentadienyl
ligands (Cp-) is reversible and that this property can be exploited
in the predictable synthesis of racemicansa-zirconocenes.

We reported the stereoselective synthesis ofansa-zirconocenes
by the reaction ofansa-bis-Cp- reagents (1) with Zr{RN(CH2)3-
NR}Cl2(THF)2 complexes (R) SiMe3 (2), Ph (3)).2b As shown in
Scheme 1, the reaction of Li2[Me2Si(3-tBu-C5H3)2] (1a) with 2 in
THF affords purerac-Me2Si(3-tBu-C5H3)2Zr{Me3SiN(CH2)3NSiMe3}
(rac-4a); metallocene products are not formed in Et2O because of
the insolubility of the reactants. In contrast, reaction of1a with 3
in Et2O affords puremeso-Me2Si(3-tBu-C5H3)2Zr{PhN(CH2)3NPh}
(meso-5a), whereasrac/meso-5a mixtures are formedin THF. We
studied the scope and mechanism of these reactions to understand
these results.

The reaction of1b-g with 2 in THF affords rac-Me2Si(3-R-
C5H3)2Zr{Me3SiN(CH2)3NSiMe3} (rac-4b-g) in quantitative iso-
lated yield (Scheme 1). In contrast, the reaction of1d,e with 3 in
Et2O affordsmeso-Me2Si(3-R-C5H3)2Zr{PhN(CH2)3NPh} (meso-
5d,e) in >95% NMR yield and 71-91% isolated yield. These
results show that the behavior of1a in Scheme 1 is characteristic
for this class of ligands. The reaction ofrac-4a-g with HCl gives
the correspondingrac-Me2Si(3-R-C5H3)2ZrCl2 complexes (rac-6a-
g) with retention of stereochemistry. Reaction ofmeso-5d with HCl
gives6d with a slight loss in stereochemistry (rac/meso) 1/16).

To probe the mechanism of stereocontrol in the formation of
rac-metallocenes in Scheme 1, the reaction of1c and2 in THF-d8

at 60°C was monitored by NMR. These experiments showed that
1c and2 are completely converted within 5 min to a 2/1rac/meso-
4c mixture, which in turn converts to purerac-4c in 6 h. No
precipitates or intermediates were observed, and the sum of the
concentrations ofrac- and meso-4c remained constant after the
consumption of1 and2 was complete. The conversion ofmeso-4c
to rac-4c displays first-order behavior in metallocene (Figure 1,
run i). Similar observations were made for the reaction of1b with
2. These results show that the formation ofrac-metallocenes by
the reaction of1 and2 in THF is thermodynamically controlled.

The meso to rac isomerization requires cleavage of a Zr-Cp
bond and re-coordination of the Cp through the opposite face.
Several mechanisms for such Cp enantioface exchange processes
have been identified in metallocenes, including photochemical,
thermal, or radical-induced M-Cp bond homolysis, silatropic
rearrangement, reversible amine elimination, heteroatom-assisted
enantioface exchange, and LiCl-induced M-Cp bond heterolysis.3-5

A series of experiments was performed to probe the mechanism in
the present system. As shown in Figure 1, conversion of the 2/1
rac/meso-4cmixture (initially formed from1cand2 in THF-d8) to
pure rac-4c occurs at the same rate in ambient fluorescent light
(run i) and in the dark (run ii), which is inconsistent with a
photochemical meso/rac isomerization. To probe the role of the

LiCl byproduct, which is soluble in THF, the LiCl was removed
from the 2/1rac/meso-4c mixture (see Supporting Information for
details), and the sample was monitored by NMR. In this case,
essentially no rac/meso isomerization occurred (run iii). Addition
of Li[B(C6F5)4] as a Li+ source to the LiCl-freerac/meso-4cmixture
had no effect (run iv). However, addition of [nBu4N]Cl to the LiCl-
freerac/meso-4c mixture resulted in rapid conversion (<5 min) to
pure rac-4c (run v). Similar results were obtained forrac/meso-
4b. These results show that the isomerization is catalyzed by
chloride ion.6 [nBu4N]Cl is a more effective rac/meso isomerization
catalyst than LiCl because it is less strongly ion-paired.

Scheme 1 a

a R ) tBu (a), SiMe3 (b), cyclohexen-1-yl (c), 1-Me-Cy (d), 1-Ph-Cy
(e), 1-Me-cyclo-C12H22 (f), CMe2Ph (g)

Figure 1. Time dependence of the concentrations ofrac-4c (upper curves)
andmeso-4c (lower curves) measured relative to an internal standard starting
from a 2/1rac/meso-4c mixture (THF-d8, 60 °C). Run i (black, squares), 2
equiv LiCl; run ii (violet, diamonds), 2 equiv LiCl and dark; run iii (blue,
diamonds), no additive; run iv (green, squares), 2 equiv Li[B(C6F5)4]; run
v (red, squares), 2 equiv [nBu4N]Cl.
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The solubility of LiCl is very lowin Et2O, which should disfavor
Cl--catalyzed rac/meso isomerization in this solvent. NMR moni-
toring of the reaction of1a with 3 in Et2O-d10 at 22 °C showed
that the starting materials are completely converted tomeso-5a
within 2 h. No intermediates or further reaction were observed. In
contrast, NMR monitoring of the same reactionin THF-d8 at 0°C
revealed the initial formation of a 1/3rac/meso-5a mixture within
4 h and subsequent conversion to an equilibrium 3/1rac/meso-5a
mixture. Complexmeso-5a is stable in THF, but addition of LiCl
or [nBu4N]Cl to a solution of meso-5a in THF-d8 results in
conversion to the equilibrium 3/1rac/meso-5a mixture. These
results show that the formation ofmeso-metallocenes by the reaction
of 1 and3 in Et2O is kinetically controlled.

The kinetics of isomerization ofmeso-5a to the equilibriumrac/
meso-5a mixture in the presence of LiCl or [nBu4N]Cl in THF-d8

were measured by NMR and exhibit clean first-order approach-to-
equilibrium kinetics (eq 1,2).kobs is the sum of the forward (k1,
meso to rac) and reverse (k-1, rac to meso) rate constants, andKeq

) k1/k-1. A series of approach-to-equilibrium experiments using
varying concentrations of LiCl established that the isomerization
is first order in [Cl-]. The mechanism in Scheme 2, in which rac
and meso interconvert via a transient “mono-Cp”η5,η0-Me2Si(3-
R-C5H3)2Zr{Me3SiN(CH2)3NSiMe3}Cl- intermediate (A), is con-
sistent with these results.

To probe if a bis-amide ligand is required for chloride-catalyzed
rac/meso isomerization, several Me2Si(η5-3-R-C5H3)2ZrCl2 com-
plexes were examined. Reaction ofrac-6c with [nBu4N]Cl under
the conditions used for isomerization ofrac/meso-4c (Figure 1, run
v) afforded an equilibrium 0.9/1rac/meso-6c mixture.7 The
isomerization of6c followed first-order approach-to-equilibrium
kinetics andk1 (meso to rac) was>25 times slower than the value
estimated for4c. Similarly, the isomerization of6b is much slower
than that of4b. These results show that the bis-amide ligand
accelerates but is not required for rac/meso isomerization. The
strong donor ability of the bisamide ligand may stabilize the electron
deficient intermediateA.

The kinetics of isomerization ofrac-6d, and of a 1/16rac/meso-
6d mixture, catalyzed by [nBu4N]Cl in THF-d8 were studied in
detail. These reactions both afford a 1/2 equilibrium mixture of
rac/meso-6d (2 d, 60°C) and exhibit clean first-order approach-
to-equilibrium kinetics. Identical kinetics are observed in ambient
room light and in the dark, and no reaction occurs in the absence
of chloride. These results are consistent with a mechanism
analogous to that in Scheme 2.

To probe if the SiMe2 bridge is required for facile displacement
of Cp- by chloride, a nonbridged system was investigated. The
reaction of a 1/1 mixture of (C5H5)2ZrCl2 and (C5H4Me)2ZrCl2 with
[nBu4N]Cl in THF-d8 afforded a 1/2/1 mixture of (C5H5)2ZrCl2,
(C5H5)(C5H4Me)ZrCl2, and (C5H4Me)2ZrCl2 after 1 h at 60°C. An
identical dark reaction yielded the same 1/2/1 mixture. No reaction
occurs in the absence of chloride.4d

Several conclusions emerge from these studies. (i) Cyclopenta-
dienyl ligands are easily displaced from zirconocene species by
chloride ion under mild conditions. (ii) As a result, the generation
of zirconocenes by Cp-/Cl- substitution is reversible under
conditions where the displaced Cl- remains in solution. (iii) In the
case ofansa-zirconocene synthesis via the reaction ofansa-bis-
Cp- reagents with Zr{RN(CH2)3NR}Cl2(THF)2 or enantiopure Zr-
{RNCHMeCH2CHMeNR}Cl2(THF)2 compounds,2c N-R groups
that deliver the desired{ansa-bis-Cp}Zr(bis-amide) stereoisomer
in high yield can be chosenin adVance based on the relative
energies of the{ansa-bis-Cp}Zr(bis-amide) products, which can
be computed (e.g., by DFT).2e Thus ansa-zirconocenes can now
be made with a high degree of predictability. (iv) Facile loss of
metallocene stereochemistry can occur under conditions where free
chloride or other nucleophilic species are present, which has
important implications for stereoselective catalysis.
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